DISCOURSE STUDIES IN COGNITIVE LINGUISTICS
SELECTED PAPERS FROM THE FIFTH INTERNATIONAL COGNITIVE LINGUISTICS CONFERENCE
Amsterdam, July 1997

Edited by
KAREN VAN HOEK
University of Michigan
ANDREJ A. KIBRIK
Institute of Linguistics, Russian Academy of Sciences
LEO NOORDMAN
 Tilburg University

Volume 176

Karen van Hoek, Andrej A. Kibrik and Leo Noordman (eds)

Discourse Studies in Cognitive Linguistics
Selected papers from the fifth International Cognitive Linguistics Conference, Amsterdam, July 1997

JOHN BENJAMINS PUBLISHING COMPANY
AMSTERDAM/PHILADELPHIA
REFERENCE AND WORKING MEMORY
COGNITIVE INFERENCE FROM DISCOURSE OBSERVATIONS

ANDREJ A. KIBRIK
Institute of Linguistics, Russian Academy of Sciences

1. Preliminaries: Linguistics and cognitive science

Linguistics is generally viewed as one of the main components of cognitive science. This presumably means that linguistics both is fed by and feeds cognitive science as a broader discipline. True, cognitive linguists have a fair record of taking the data provided by cognitive psychology into serious account; see, for example, the impact of Rosch and other psychologists on the work of Lakoff (e.g. 1987), or psychologically minded linguistic work such as Tonkm (1994) or Dickerson & Gigluc (1997). On the other hand, the impact of linguistics on cognitive science has been quite modest. A typical textbook in cognitive psychology or cognitive science contains a chapter on language in which the only linguistic framework covered with any degree of detail is that of generative grammar. I believe that this situation is not tolerable and that cognitive linguists should try to explain their points to psychologists more effectively. After all, language is the main natural phenomenon that consistently and abundantly demonstrates overt traces of cognitive processing, and it cannot be ignored by the general enterprise of cognitive science.

1 The initial part of this project was conducted during my stay as a visiting scholar at the University of Oregon, on a grant from the Fulbright Program (CFES). I am very grateful to Russ Tomas for his support; without which the experimental part of the project would not have been fulfilled. The final stage of the study was supported by Grant #88-06-60442 of the Russian Basic Research Foundation. I would like to thank Owen Fielding for her invaluable help in this project, especially in the part reported in section 4.3. I also appreciate the generous assistance of my English language consultants, especially Amy Crumpell.

Various parts of this study have been reported at several academic seminars at the University of Oregon (January 1997), at Emory University, Atlanta (January 1997), at the University of Hawai‘i (February 1997), at the Moscow Institute of Linguistics (October 1997), ICCLC-97 (naturally),
In this paper I address some problems in the study of one important cognitive system, known as working memory. I will try to demonstrate that linguistic analysis can contribute to the resolution of these problems. This paper attempts to develop the tradition of cognitively oriented discourse analysis (Chafe 1994, Tomlin 1994, Givón 1995: Ch. 8, inter alia) and to establish links between linguistics and cognitive psychology.

In §2 I introduce some concepts in the study of working memory. In the main body of this paper I look into a well-known linguistic phenomenon: choice of referential expression for a referent in discourse, and present my cognitive-linguistic analysis of this phenomenon. (For another recent cognitive-linguistics approach to reference, see van Hoek 1997, Langacker 1996.) I then demonstrate that this analysis can contribute to a more general enterprise: the study of working memory in cognitive science. That is, from observing reference in natural discourse, one can make certain inferences about the human ability of working memory.

2. Working memory

Working memory (WM; otherwise called short-term memory or primary memory) is a small and quickly updated storage of information. The study of WM is one of the most active fields in modern cognitive psychology (for reviews see Baddley 1986; Anderson 1990: Ch. 6; some recent approaches are represented in Gathercole (ed.) 1996). WM is also becoming an important issue in neuroscience, see Smith & Jonides (1997).

The range of classical questions about WM includes, inter alia, the following three:

- CAPACITY: how much information can there be in WM at one time
- CONTROL: what is the mechanism through which information enters WM
- FORGETTING: what is the mechanism through which information quits WM

The contribution to these classical questions I propose below is a side product of a linguistic study (described in Kibrik (1996)) and in §3-4 below) that relied on cognitive work. At some point I discovered that the model I developed to explain and predict discourse phenomena has implications for more general cognitive issues.

Below I will briefly outline the study Kibrik (1996) on referential choice in Russian narrative discourse (§3), report an analogous study of English reference (§4), and then proceed with the three issues in working memory mentioned above (§5, §6, and §7). Conclusions are presented in §8.

3. Referential choice in discourse: A cognitive calculative approach

A number of linguists have proposed that referential choice in discourse is dependent on the current memorial status2 of the referent (Tomlin & Pu 1991, Chafe 1994, Givón 1995: 380ff.; cf. also Kibrik 1987; Ariel 1988; Gordon, Grosz & Gilliom 1993; Gundel, Hedberg & Zacharski 1993). This hypothesis amounts to the following:

(1) If a referent is currently highly activated in the speaker’s working memory, it is coded by a reduced NP (anaphoric pronoun or zero), and if the referent’s activation in the WM is below a certain threshold, it is coded by a full NP.3

Hypothesis (1) presupposes that entities can pertain to WM to different degrees and that, therefore, the boundaries of WM are not cut-clear. For example, Chafe (1994) distinguishes three degrees of activation of referents: active, semiactive, and inactive. In the present study, activation is interpreted as gradual closeness to the center of WM. Activation is maximal when the entity is in the center of WM, and minimal when the entity is totally out of WM; however, all intermediate degrees are possible, too.

Hypothesis (1) is compatible with the research of such psycholinguists as Gerbsbacher (1990), Clifton & Ferreira (1987), Vonk, Hustinx & Simons (1992), inter alia. Below I take hypothesis (1) for granted, relying on the work of the

2 Not all of the authors listed below actually speak in terms of memory; for example, Chafe prefers the concept of “consciousness”. However, in my understanding these authors have in mind essentially the same kind of cognitive phenomena.

3 As has been noted by a number of authors (e.g., Chafe 1994), the more important issue may be how activated the referent is in the addressee’s WM, according to the speaker’s current assessment. But for the sake of simplification I talk about activation in the speaker per se.
above-mentioned authors, including experimental work. The hypothesis will be substantially specified below. In §6 I present additional evidence in favor of hypothesis (1).

In Kibrik (1996) I proposed a model of referential choice in Russian narrative prose, that is, the choice between a full NP and a reduced NP (in Russian, usually the third person pronoun on). My goals in that study were:

- to explain all occurrences of referential expressions in the selected discourse corpus
- to identify all factors influencing referential choice
- to design a calculative model of interaction between the relevant factors.

Here I will briefly outline that model; illustrations are postponed to §4, where I also discuss data from English. The model I proposed for Russian narrative discourse includes seven factors related to the properties of either the referent or the previous discourse, such as distance to the antecedent (three different measurements of distance are used), syntactic and semantic role of the antecedent, and stable features of the referent (such as animacy).

The list of factors was identified empirically as necessary and sufficient to make predictions about referential choices (see below). All the factors contribute to referential choice, but not directly. They give rise to an integral characterization of a referent at the given moment in discourse. This integral characterization is called the activation score (AS), that is, the status of the referent in the speaker’s working memory. AS varies between 0 and 1. If AS=0, the referent is completely out of the speaker’s WM; if AS=1, the referent is maximally activated in the WM. All intermediate grades of activation are possible, the minimal point on this scale being 0.1. When a particular referent has a high AS, it takes up a significant portion of the overall WM; this issue will be discussed in detail in §5.

Each factor can be realized by two or more different features. For example, linear distance to the antecedent measured in discourse units (roughly corresponding to clauses) can be 1, 2, 3, 4, or more than 4. Each feature has a numerical activation value, positive or negative, that can contribute to AS in particular cases. Since for each mention of a referent in each clause all factors and their features are easily and operationally identifiable, the corresponding numerical values are available too. They are simply added to each other, thus giving the AS of the particular referent at the particular point in discourse.

Numerical activation values were specified through a cyclic heuristic procedure; they were refined until a complete fit of the predictions made on the basis of the values (see below) to the observed data was reached.

An illustration of how activation factors are organized is found in Table 1. The structure of the most powerful activation factor (Rhetorical distance; see explanation in §4), including its possible features, and the numerical activation values of each feature, are shown there.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Feature</th>
<th>Activation value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhetorical distance to the antecedent</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4+</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

Table 1: An illustration of an activation factor, its features and numerical activation values

Below, in the discussion of English data, I will present more comprehensive information on each of the activation factors in their application to English.

Once each factor’s feature is operationally identified at each point in the discourse for each referent, one knows all the relevant numerical values. These values are summed up to give the current AS of the referent. The referential options available to the speaker in this situation are provided by so-called referential strategies, summarized in Figure 1. These strategies guide the choice between the full NP and the primary Russian reduced referential device: third person pronoun on. Figure 1 demonstrates the referential strategies as developed for Russian narrative discourse in Kibrik (1996).

![Fig. 1: Referential strategies in Russian narrative discourse: referential choice based on the referent's activation score](image)

This means that, if AS is maximal, the third person pronoun only should be used. When AS is relatively high, both a pronoun and a full NP are appropriate. If AS is in the middle of the scale, a pronoun is unlikely (probably depending on the idioclect), and if AS is low, pronouns are ruled out.

Figure 2 is a flow chart of the process of referent mentioning in discourse. One component of model not discussed above is 'Filters'. The most important filter is referential conflict, or ambiguity; this will be discussed at some length in §7 below (though filters are not the main focus of this paper).
By ‘activation-based pronouns’ I mean the unmarked, general type of pronoun occurrences that cannot be accounted for by means of any kind of syntactic rules, often for the simple reason that they appear in a different sentence than their antecedents. In order to explain and predict this kind of pronoun occurrence, one needs to construct a system of the type described in this paper, taking into account a variety of factors related to discourse context and referent properties. Typical examples of activation-based pronouns are given in (2) below.

(2) 1607 Lightning split the sky
 1608 as she ran into the cabin
 1609 and slammed the door against the wet wind.
 1610 Now everything was safe and secure.
 1701 When she lit the lamps,
 1702 the cabin was bright and warm.

There are two occurrences of the activation-based pronoun *she* in (2), and the second one is used despite being separated from its antecedent by a paragraph boundary (the first two digits in the number of a discourse unit designate the paragraph number).

There is a different type of pronoun occurrence that can be called “syntactically based.” Syntactically based pronouns (and zeroes) are the third largest class among the mentions of important referents in the corpus. Examples of syntactically based pronouns and anaphoric zeroes are given in (3) and (4) below.

(3) 0901 On her little stove, *Margaret* set a big pot of broth to bubble and boil

(4) 1601 She took in the *sail*
 1602 and *θ* tied it tight.

In principle, such occurrences of pronouns can be accounted for by the activation-based rules. Syntactic anaphora is no doubt a grammaticalization of activation-based anaphora, the factors operating in both cases are quite similar. However, pronoun occurrences like those in (3) and (4) can be treated more simply as syntactically induced (this would probably be more adequate from a psychological standpoint as well). They appear in such tight and stereotypical contexts with their antecedents that trying to explain them through the sophisticated apparatus of activation factors would be an overcomplication. The simple syntactic
factor at work in (3) is the antecedent’s role as subject of the clause. The simple syntactic factor in (4) is the parallelism in the syntactic positions of the subject antecedent and the zero pronoun and of the object antecedent and the overt pronoun (so-called parallel function or role inertia, described by Caramazza & Gupta 1979).

There are 25 syntactic occurrences of overt pronouns in the corpus; they are not of primary importance in this study and are not included in the discussion below.

4.2 The database

The focus of this study is restricted to 39 full NP references and 40 activation-based pronominal references. As was found in the study Kibrik (1996), for each of the referential types — full NPs and pronouns — there is a crucial issue: whether the referential form in question has an alternative. For example, there is a significant difference between a pronoun that can be replaced by a full NP and a pronoun that is categorical, that is, one which allows no referential alternative. These two kinds of pronouns would correspond to different levels of activation. In (5) below there is an example of a pronoun that could be replaced by a full NP: in unit 1601 the full NP Margaret could well be used (especially provided that there is a paragraph boundary before unit 1601).

(5) 1502 A storm was coming!
1503 Margaret must make the boat ready at once.
1601 She took in the sail.
1602 and tied it tight.

Contrasting with this are occurrences of categorical pronouns. Consider an example which is a direct continuation of (5):

(6) 1603 She dropped the anchor.
1604 and stowed all the gear.<...>

In 1603, it is impossible to use the full NP Margaret; only a pronoun is appropriate.

For the English data, it was found that the occurrences of each type of referential form (for example, pronouns) fall into three categories: those which allow no alternative (categorical), those which unquestionably allow an alternative, and those which clearly allow an alternative. Thus there are six possible correspondences between the five potential types and two actual realizations, see Table 2.

<table>
<thead>
<tr>
<th>Potential referential form</th>
<th>full NP only</th>
<th>full NP, *pronoun</th>
<th>pronoun or full NP</th>
<th>pronoun, *full NP</th>
<th>pronoun only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual referential form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Actual and potential referential forms

The information about referential alternatives is crucial for establishing referential strategies. Of course, attribution of particular cases to one of the categories is not a straightforward matter. There were two sources of information on referential alternatives used in this study: native speaker judgments on which referential expressions could vary, and assessments of already-modified referential expressions by native speakers.

4.3 Judgments on referential alternatives

First, a native speaker of English who was a linguist and had a full understanding of the problem and the research method was requested to supply her intuitive judgments on all thinkable referential alternatives in all relevant points of discourse. (This person is referred to as “Expert” below.) Each referential alternative was considered independently, under the assumption that the rest of the discourse is left intact. Each referential alternative was subject to a four-way judgment: (i) appropriate (ii) slightly awkward (iii) questionable or significantly awkward (iv) clearly inappropriate. Those referential alternatives that were attributed to category (iv) — clearly inappropriate — were excluded from further consideration and the corresponding referential choices were considered to be “pronoun only” or “full NP only”.

Of course, it is not permissible to fully rely on the intuitions of one subject, so in order to objectivize the attribution of reference to particular referential types, an experiment of the following design was conducted. The idea of the experiment was to modify the original referential forms, present it to a subject and see whether the subject identifies the replacement as a linguistic (or “stylistic”) error. Of course, in order to keep the general well-formedness of the discourse one cannot make too many modifications at a time, because there is a threat of interference between modifications in the adjacent parts of the discourse. Seven modified discourses were made up from the original discourse. All relevant references were subject to modification in one or another version of the discourse. In each particular version of the discourse the adjacent changes never appeared closer than across a paragraph boundary, and usually had at least two paragraph boundaries between them.
Thus, there were 8 different variants of the discourse (one original and seven modified ones). They were presented to 12 students at the University of Oregon, native speakers of English, who did the job of assessing the felicity of the discourse 20 times altogether. Most of the subjects did the assessment job twice (with a time interval of two days), but some only once. Those who did the assessment twice were presented with distinct variants of the discourse. No dependency of the assessment on the number of the trial (first vs. second) was discovered. Each of the 8 variants of the discourse was assessed an average of 2.5 times.

4.4 Weighted judgments and referential strategies

A special task was to bring all of the Expert’s judgments and the student subjects’ judgments together and build an integral judgment of each referential alternative. A system of weights was set up for this purpose. The Expert’s judgments were assigned the following weights: (i) appropriate: 2; (ii) slightly awkward: 0; (iii) questionable or significantly awkward: -2.

The student subjects normally used only two options: They either did not notice the referential replacement or pinpointed it in the discourse and rejected it by returning to the original referential choice. The “default” acceptance of the referential alternative was assigned a weight of 1. The rejection of the alternative was assigned a weight of -2. The difference in the absolute values is due to the fact that pinpointing an “error” and rejecting it is a much more conscious and volitional act than default acceptance. I would even be inclined to assign a weight of -3 to the rejection, except that it is not always clear to what degree the referential alternative is awkward.

All of the judgment weights (both those of the Expert and those of the student subjects) were summed together and averaged. The integral judgments on referential alternatives were obtained through the numerical scale shown in Figure 3.

![Fig. 3: Averaged judgments of referential alternatives](image)

Referential alternatives with a value of -3/4 or less are considered inappropriate. Alternatives falling in the range between -3/4 and 3/4 are judged questionable. Referential alternatives with a value of 3/4 or more are considered as appropriate as the actual referential choices in the original discourse.

The referential strategies I arrived at in this study are represented in Figure 4. Five categories of potential referential forms correspond to five different intervals on the activation scale. Specific activation factors and their numerical values giving rise to ASs at particular points of discourse are explained below in §4.5.

![Fig. 4: Referential strategies in English narrative discourse](image)

The numerical representation of the five categories of potential referential forms in the corpus is shown in Table 3.

<table>
<thead>
<tr>
<th>full NP only</th>
<th>full NP, t.pronoun</th>
<th>either full NP or pronoun</th>
<th>pronoun, t.full NP</th>
<th>pronoun only</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS:</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 3: Frequencies of referential forms in the corpus

4.5 Activation factors

The system of activation factors that was developed for the Margaret discourse corpus is presented in Table 4. The appendix to this paper contains a table (the first three paragraphs) of the discourse.

Some comments regarding the activation factors and their structure and values are in order. I present a concise version of these comments here, and refer the reader to a more extensive discussion in Kibrik (1996). I omit any discussion of why only certain factors are relevant for referential choice; see Kibrik (1996).

The first three activation factors listed in Table 4 are related to the distance from the point in question to the antecedent. This distance can be measured in three different ways. Givón (1983), among others, proposed linear distance to the antecedent, measured in clauses, as an important determinant of referential choice. Fox (1987a) demonstrated that it is the hierarchical (rather than linear) structure of the discourse that is relevant for the relationship between the point in question and the antecedent. The model of hierarchical discourse structure used in Fox (1987a) and assumed in this study as well is the Rhetorical Structure
Table 4: Activation factors and their values, as identified for English narrative discourse

Theory of Mann and Thompson (see e.g., Mann, Matthiessen & Thompson 1992). In Rhetorical Structure Theory, discourse is represented as a net of discourse units (roughly equaling clauses) connected by so-called rhetorical relations (such as sequence, cause, purpose, condition, concession, etc.). Each discourse unit is rhetorically connected to at least one other discourse unit, and via it, ultimately, to any other discourse unit. **Rhetorical, or hierarchical, distance** is measured by the number of discourse units to the unit containing the antecedent; the “path” to such an antecedent discourse unit is found in accordance with the rhetorical net. The discourse sample in the Appendix contains a simplified representation of the rhetorical structure demonstrating how discourse units can be hierarchically related to one another. Even though rhetorical distance is indeed a more powerful and explanatory parameter than linear distance, the latter has an important value, too. The third distance factor is **paragraph distance**; this factor was emphasized by Marslen-Wilson, Levy & Tyler (1982), Fox (1987b), Tomlin (1987) and others. Paragraph distance is measured by the number of paragraph boundaries between the point in question and the antecedent. Rhetorical distance is by far the most influential among the distance factors, and in fact among all activation factors: it can add up to 0.7 to the activation score of the referent. Linear and paragraph distance can be called penalty factors, since they can only deduct something from the AS if the distance is too great.

The next factor indicated in Table 4 is that of **grammatical role of the linear antecedent** (note that, because of the different principles of identifying rhetorical distance and linear distance, one referent mention can have two distinct antecedents: a rhetorical and a linear one). The logical structure of this factor is rather complex. First, it applies only when the linear distance is short enough: after about four discourse units, the role of the antecedent is forgotten and only the fact of its presence may still be relevant. Second, this factor has a fairly diverse set of features. As has long been known from studies of syntactic anaphora, the subject is the best candidate for the pronoun’s antecedent. Different subtypes of subjects, though, have different weights, ranging from 0.4 to 0.2. Other relevant features of this factor include direct object, nominal part of the predicate, and “suppressed NP” — a non-mention of a referent that is however semantically implied in the discourse unit (though not being syntactically identifiable as, for instance, a zero subject in a coordinate structure); an example of such a suppressed mention of “the peaches” appears (or rather does not appear) in discourse unit 1707.

(7) 1706 She sliced some peaches
 1707 and put cinnamon and honey on top,
 1708 and they went into the oven, too.

The antecedent role factor is the second most powerful, after rhetorical distance, and is an important source of activation.
The next couple of factors are related not to the previous discourse but to the relatively stable properties of the referent in question. Ani\textit{macy} specifies the permanent characterization of the referent on the scale of the "great chain of being". Pro\textit{tagonist}hood specifies whether the referent is the main character of the discourse (on some procedures of protagonist identification see Givón 1990: 907–908). Protagonist\textit{hood} and animacy can be called rate-of-deactivation correction factors. They capture the observation that important discourse referents and human referents deactivate more slowly than those referents that are neither important nor human. In the formulation presented in Table 4, protagonist\textit{hood} is connected with the rhetorical and paragraph distance: when these two together are high enough, a protagonist referent gains some extra activation; when they are not, protagonist\textit{hood} does not matter; 'series' is a group of clauses all containing mentions of a referent preceded by a group of at least three clauses containing no mentions of the referent. Animacy is connected here with the linear structure of discourse: under high linear distance, human referents deactivate less than other referents.

The final group is second-order (or "exotic") factors, including the following ones. Supercont\textit{iguity} comes into play when the antecedent and the discourse point in question are in some way extraordinarily close. Temporal or spatial shift is similar to paragraph boundary but is a weaker episodic boundary; for example, occurrence of clause-initial \textit{then} frequently implies that the moments of time reported in two consecutive clauses are distinct, that is, in some way separated from each other rather than flowing from one to the other. Weak referents are those that are not likely to be maintained — such as "bed" in 0105 (see Appendix). Predict\textit{ability} is a relationship between the current discourse unit and the preceding one, such that it can be predicted that a certain referent must be mentioned at this point; this happens with the referent "Margaret" in discourse unit 1202:

(8) 1201 After juice-and-cookie time, she gave James his counting lesson.
 1202 and this is how \textit{she} did it.

Finally, introductory antecedent means that when a referent is first introduced into discourse it takes no less than two mentions to fully activate it.

4.6 Remarks on the system of activation factors

The numerical activation values of each feature cited in Table 4 were obtained through a long heuristic "trial-and-error" procedure, performed in cycles until the whole array of data was explained. There is no space here to demonstrate in detail how the system of activation factors works and predicts/explains particular referential choices in accordance with the referential strategies (Figure 4). Also, some important components of the model are not mentioned in this paper for the sake of brevity. However, it should be stated that all the referential facts contained in the original discourse, and obtained through experimentation with modified discourses, are indeed predicted/explained by the combination of activation factors with their numerical values, and the referential strategies.

It should be mentioned that the arithmetical approach employed allows the AS to turn out somewhat higher than 1 in some cases. For example, the system of numerical values was set up in such a way that categorical pronouns received the AS of 1.1. This is interpreted as "extremely high activation" which gives the speaker no full NP option to mention the referent. The AS of 1 is then interpreted as "normal maximal" activation. Also, a low AS frequency turns out to be negative. Such values are simply rounded to 0. It is definitely possible to arrange the mathematics of the present model in such way that the calculated AS never goes beyond the interval between 0 and 1; however, at the present stage I prefer to use the rough and simplistic approach rather than complicate the model with sophisticated and hard-to-understand mathematics.

The system of activation factors developed for English is largely similar to that developed for Russian, but has some important differences. Exploration of language typology within this approach is a matter for future research.

We can now address the questions about working memory that were posed at the beginning of this paper.

5. Capacity

The question of the capacity of WM is the following: how much information can there be in WM at one time? Of course, there are different kinds of information processed in WM at any given time. It is clear that among those kinds there is information about specific referents thought of or spoken of, and most likely this constitutes an important portion of WM.

Smith and Jonides (1997), relying on psychological and neurological experimentation, suggest that there are multiple working memories, devoted to different types of information: spatial information, verbal information, and information related to visual objects. Developing this line of reasoning, it seems plausible that there must be a WM for specific referents, or at least a specialized section of WM devoted to specific referents. If so, the question of the maximal capacity of such a WM section can be legitimately raised. In different situations, WM for specific referents is differently divided into parts for particular referents.
Highly activated referents take up a large portion of the overall WM capacity, while referents of low AS take up a tiny fraction of the capacity.

The system of activation factors and their numerical values was developed in order to explain the observed and potential types of referent mentions in discourse. In the first place, only those referents that were actually mentioned in a given discourse unit by the author were considered. But this system was discovered to have one additional advantage: it operates independently of whether a particular referent is actually mentioned at the present point in discourse. That is, the system can identify any referent’s activation at any point in discourse. For example, the AS of the referent “Margaret” can be identified for every discourse unit no matter whether the author chose to mention “Margaret” in that unit.

If so, one can find out the activation of all referents at a given point in discourse. Consider discourse unit 0302 (see Appendix). Among the protagonist referents, only “Margaret” was selected by the author to be mentioned in that unit; its AS was low (0.3), so the author could only use a full NP. For another protagonist referent, “James”, that was not chosen by the author for discourse unit 0302, the AS can also be easily calculated: it is 0.6. Likewise, for “the ship” it is 0.4. In addition, one more referent has a non-zero AS, too: “the rooster” has an AS of 0.9.

Summed together, the ASs of all referents will produce grand activation — the summary activation of all referents at a given point in discourse. In 0302, grand activation is 2.2. Remember that the value of 1 on this scale is the normal maximal activation of a single referent.

Grand activation gives us an estimate of the capacity of the specific-referent portion of WM. Figures 5 and 6 (on p. 45) depict the dynamics of activation processes in portions of Russian and English discourses. In each case, the activation of two major protagonists is demonstrated, as well as grand activation.

Observation of the data in Figures 5 and 6 makes it possible to arrive at several important generalizations.

(9) Grand activation normally varies within a range between 1 and 3, with a mean of about 2 or somewhat less, where 1 is the normal maximal activation of a specific referent; we that have an estimate of a very important portion of WM.

4 It should be emphasized that grand activation does not depend on the number of protagonists in the discourse. Even when there are more than two protagonists (e.g., four), at a given point in discourse not all of them act, and grand activation does not become twice as high as in the case of two protagonists.
(10) Grand activation varies much less than the activation of individual referents, which fluctuates between 0 and 1 all the time; the maximal grand activation value is only about 3 times higher than its minimal value.

(11) The strongest shifts of grand activation are found at paragraph boundaries; even a visual examination of the graph in Figure 6, for instance, demonstrates that grand activation values at the beginnings of all paragraphs are local minimums; for the English excerpt the mean grand activation at the beginnings of the paragraphs is 1.2; apparently one of the cognitive functions of a paragraph is a threshold of activation update.5

There are some differences between the Russian and English activation patterns. First, the mean grand activation for the Russian extract is 1.7, while for English it is 2. Second, paragraph boundaries seem to have a more radical significance in English than in Russian. Both of these tendencies are observed not only in the illustrative excerpts of Figures 5 and 6 but throughout the discourse corpora employed in this study. It is not clear whether these differences can be attributed to a difference between languages, or discourse genres, or are significant at all. These questions call for further research.

6. Control

The question of control of WM is the question of how information comes into WM. Consider the following three statements.

(a) Current cognitive literature connects attention and WM. The mechanism controlling WM is what has long been known as attention. This view is expressed and motivated by Baddeley (1990), Cowan (1995) and, on a neurological basis, by Posner & Raichle (1994:173). According to the latter authors, information flows from executive attention, based in the brain area known as anterior cingulate, into WM, based in the lateral frontal areas of the brain.

(b) The linguistic manifestation of attention is grammatical roles. As has been convincingly demonstrated in the experimental study of Tomlin (1994), focal attention in many languages, including English, is consistently coded by speakers as the subject of the clause.

(c) Subjecthood and reduced forms of reference are causally related: antecedent subjecthood is among the most powerful factors leading to the selection of a reduced form of reference. In both English and Russian, antecedent subjecthood can add up to 0.4 to the overall activation of a referent. In both English and Russian discourse corpora, 86% of pronouns allowing no referential alternative have subjects as their antecedents.

Considered together, these three sets of facts lead to a remarkably coherent picture of an interplay between attention and WM, both at the linguistic and at the cognitive level:

(12) Attention feeds WM, i.e. what is attended at moment \(t_n \) becomes activated in WM at moment \(t_{n+1} \). Linguistic moments are discourse units. Focally attended referents are coded by subjects; at the next moment they become activated (even if they were not before) and are coded by reduced NPs.

The relationship between attention and WM, along with the relationship between their linguistic manifestations, is represented in Table 5.

<table>
<thead>
<tr>
<th>Moments of time (discourse units)</th>
<th>(t_n)</th>
<th>(t_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive phenomenon</td>
<td>focal attention</td>
<td>high activation</td>
</tr>
<tr>
<td>Examples</td>
<td>Margaret, she</td>
<td>she, her</td>
</tr>
</tbody>
</table>

Table 5: Attention and working memory in cognition and in discourse

7. Forgetting

How does information get forgotten from WM? There is a long debate in cognitive psychology between two competing hypotheses (for a review see Baddeley 1986:6–71). The first one, sometimes called 'trace decay', suggests that forgetting is a function of time. The second hypothesis, admittedly a more sophisticated one, proposes that information gets forgotten not simply because of the time factor but due to interference of or displacement by other incoming information.
The factor of time is captured in the model outlined above by means of the distance factors. As distance (in its different aspects) becomes greater, activation goes down. That is, the model developed here apparently is in line with the trace decay hypothesis. What is the linguistic evidence in favor of this view?

First, referents clearly deactivate, even in the absence of incoming, strongly competing referents. Consider an example from paragraph 3 of the English story. In discourse unit 0304, there are two pronouns and three highly activated referents: “Margaret”, “James”, and “the sun”, with ASs of 1, 0.9, and 1.1, respectively. Now compare that example with the already familiar discourse unit 0302 in which “Margaret” is highly unlikely to be mentioned by a pronoun because its AS is 0.3. Is the non-pronominalizability of “Margaret” in 0302 due to interference of other referents? Candidate referents for such a role would be “James” (AS=0.6) and the newly introduced referent “the rooster” (AS=0.9). Keeping in mind what is permissible in 0304, it looks very implausible that referents with such low ASs could displace “Margaret” from WM and deprive it of high activation. What actually does deactivate “Margaret” since its previous occurrence in 0204 is distance — paragraph, rhetorical, and linear.

Second, a limitation on the number of concurrently activated referents does not necessarily require the concept of displacement or interference. It can be explained by the already stated limitation on the capacity of WM. Since grand activation rarely exceeds 3, three strongly activated referents, as in 0304, is about as much as there can be in discourse at one time. And this is due not to the displacement effect but to the balanced system of activation factors that activate and deactivate referents in accordance with the limits of the WM store.

The phenomenon of competition between referents is, however, real. Suppose that there are two highly activated referents at a certain point. Suppose the speaker needs to mention only one of them at that point, and uses a reduced form of reference. Since the addressee also knows that there are two highly activated referents, how would s/he recover the correct referent from the reduced form? This situation is called referential conflict, or, more traditionally, ambiguity.

Every language possesses a repertoire of devices aiding discrimination between such referents, for example, gender (as in 0304). A typology of such devices was outlined in Kibrik (1991). Referential conflict, if not eliminated by such supportive devices, can prevent the speaker from using a reduced referential form even in the case of very high activation. The important point here is that referential conflict and all processes associated with it are a separate component of the referential system. Referential conflict is not an activation (or deactivation) factor, it is a filter coming into play after the activation factors compute the ASs of referents (see Figure 2).

If the discourse data support the trace decay hypothesis of forgetting, there seems to be a clear contradiction between them and the quite advanced cognitive-psychological studies proposing the other alternative: the interference/displacement hypothesis. Hocke (1973) provides a clue to the explanation for this contradiction. In that study a difference between the compulsory and the passive strategies of operating WM was emphasized. According to Hocke, under a passive strategy, when the pace of performance is chosen by the subject rather than by the experimenter, the pattern of forgetting approaches the prediction made by the trace decay hypothesis. The problem is that in many psychological experiments the cognitive system of a subject undergoes such pressure that never or rarely occurs in natural conditions. In other words, in experiments, it is not the attentional system of an individual himself but rather the will of the experimenter exploits WM and brings there too many referents at a time, and the effect of interference can indeed be observed. It is very likely that in natural conditions (under the “passive” strategy), on the other hand, the attentional system brings as many referents to WM as WM can normally accommodate and process.

8. Conclusions

The main conclusions about the functioning of WM we arrived at in this study include the following:

- the capacity of WM for referents is severely limited (about 3 times maximal activation of a single referent)
- referents enter WM through the mechanism of attentional control
- referents can be forgotten from WM by the mechanism of decay.

If these conclusions are correct, this means that linguistic discourse analysis can indeed contribute to explorations of the human cognitive system.

6 As pointed out in §4.5 above, the rate of deactivation can be different for different referents: protagonists and humans deactivate more slowly than other referents. However, deactivation always happens with time, and even for protagonists and humans, distance factors are the most powerful.

7 One could argue that in such cases displacement might still take place, but that the displacing information is not referents but, perhaps, other activated information — states or events being spoken of. However, as discussed in §5 above, it is likely that working memory for specific referents is a relatively separate module of the cognitive system with its own capacity limitations.
Appendix

The discourse excerpt below is broken into discourse units. Each unit has a four-digit number. The first two digits designate the paragraph number, and the following two digits, the number of the discourse unit within the current paragraph.

0101 This is a story of a wish come true.
0102 Margaret Barnstable wished on a star one night —
0103 "North Star, star of the sea, I wish for a ship named after me
0104 To sail for a day, alone and free, with someone nice for company."
0105 And then she went off to bed.
0201 When she woke up,
0202 she was in the cabin of her own ship.
0203 It was named The Maggie B. after her,
0204 and the nice company was her brother, James,
0205 who was a dear baby.
0301 A rooster crowed on deck,
0302 so Margaret knew the day was about to begin.
0303 She took James out to welcome the sun.
0304 It warmed them up
0305 and brightened the sky.

References

